照明如何影响视觉应用

机器视觉系统中的照明系统是极其重要的一部分,它的好坏直接影响着后面的图像处理。在听了一位日本光源专家的讲座之前,我其实对照明并不太了解,不就是将图像照亮以至于相机能够拍到图像吗?但事实并非如此,照明远非增强图像亮度这样简单,好的照明系统可以减少很多图像处理工作,提升整个机器视觉系统效率。那么照明是怎样一门学问呢?如何在机器视觉系统中选择合适的照明系统呢?

合适的照明是机器视觉应用成功的关键,而且是第一要考虑的部分。一个设计良好的照明系统不仅会带来更好的性能,节约时间,而且从长远来看能节约成本。下面来分享选择最合适机器视觉照明的八个小技巧,它们是:

(1) 检测材料缺损请使用亮度高的光;

(2) 精确定位请使用合适波长的光;

(3) 检测玻璃上的刮痕请使用非漫射的光,即Non-Diffused Light;

(4) 检测透明包装请使用漫射光,即Diffused Light;

(5) 创造对比请使用颜色光;

(6) 检测快速移动物体请使用频闪光;

(7) 消除反射时请使用红外光;

(8) 消除颜色变化请使用红外光;

对于将质量最为输出的机器视觉系统依赖于图像质量。高质量的图像使得系统能够精确地解释出从检测物体中提取的信息,这样就可以产生可靠的并可重复的系统性能。在任何视觉应用中需要的图像质量很大程度上取决于照明条件:颜色,角度和使用照明对象的光源数量意味着好图像之间的差异,有可能会产生更好的性能,也会带来质量差的图像,产生不好的结果。

机器视觉照明应该最大化特征对比,同时最小化其它剩下的对比度,因此让相机清晰看到部分或标记。高对比度特征简化集成和提高可靠性;对比度差的图像和不规则的照明需要来自系统的更多努力,而且也增加了处理时间。最优的照明取决于检测物体的尺寸,它的表面特征和部分几何特征和系统需求。具有宽范围的波长(颜色),视场(尺寸),对于特殊应用需要,就可以灵活的选择机器视觉照明。

当选择照明时需要考虑以下五个方面:

1. 表面是光滑,还是崎岖不平?

2. 表面是暗淡,还是光亮?

3. 对象是弯曲的,还是平坦的?

4. 条码或标记的颜色是怎样的?

5. 是检测移动的物体,还是静止的对象?


上一篇:关于照明设计

下一篇:家居灯具选择有讲究

TAG标签: 74HC4051PW