关于电容的参数,我们将其分为“看得到的”和“看不到的”。所谓“看得到的”电容参数,就是印在电容表面的一些基本参数,这些参数在我们看到一颗电容之后往往可以直接得知。例如电容的容量(比如“470μF”等等)、容量偏差范围、耐温范围、电压值(比如“16V”)。
所谓“看不到的”参数,就是我们需要根据电容的型号来查询的参数。例如我们常说的ESR值,如今已成为区别电容性能的重要参数,而我们在电容上是看不到这个参数的,我们得去相关的网站通过电容的型号来查询。类似的参数还有不少,其中包括如下一些:
1.ESR值;
2.能够耐受的涟波电流值;
3.温度特性;
4.损耗角的正切(TAN)电容参数,相当于无功功率和有功功率的比值,这个值跟电容的品质以及发热量有关系,这个值越小电容性能越好。
5.漏电流值:无论绝缘体多大,总是会有细微的电流漏过电容,这个值则代表具体漏过的多少。
此外,ESL特性也是电容的性能指标之一。但是随着电容技术的发展,现在的高档电解电容,其ESL特性一般都很好,到10MHz、20MHz以上的时候往往才能体现出区别,因此也就失去了比较的意义。
电容ESR的意义 ESR缘何重要?
首先来说ESR。ESR是高频电解电容里面最重要的性能参数,很多电子元器件都强调“LOW ESR”这一性能特征,也就是ESR值很小的意思。那么,我们如何正确理解LOW ESR的实际意义呢?由于现在电子技术的发展,供应给硬件的电压正呈现越来越低的趋势,例如INTEL、AMD的最新款CPU,电压均小于2V,相比以前动辄3、4V的电压要低得多。但是,另一方面这些芯片由于晶体管和频率爆增,需求的功耗却是有增无减,因此按P=UI的公式来计算,这些设备对电流的要求就越来越高了。
例如两颗功耗同样是70W的CPU,前者电压是3.3V,后者电压是1.8V。那么,前者的电流就是I=P/U=70W/3.3V大约在21.2A左右。而后者的电流就是I=P/U=70W/1.8V=38.9A,达到了前者的近一倍。在通过电容的电流越来越高的情况下,假如电容的ESR值不能保持在一个较小的范围,那么就会产生比以往更高的涟波电压(理想的输出直流电压应该是一条水平线,而涟波电压则是水平线上的波峰和波谷)。
此外,即使是相同的涟波电压,对低电压电路的影响也要比在高电压情况下更大。例如对于3.3V的CPU而言,0.2V涟波电压所占比例较小,还不足以形成致命的影响,但是对于1.8V的CPU而言,同样是0.2V的涟波电压,其所占的比例就足以造成数字电路的判断失误。
那么ESR值与涟波电压的关系何在呢?我们可以用以下公式表示:
V=R(ESR)×I
这个公式中的V就表示涟波电压,而R表示电容的ESR,I表示电流。可以看到,当电流增大的时候,即使在ESR保持不变的情况下,涟波电压也会成倍提高,采用更低ESR值的电容是势在必行。这就是为什么如今的板卡等硬件设备上所用的电容,越来越强调LOW ESR的缘故。
衡量电容性能的几个重要性能参数 - 癞蛤蟆走天下 - fengfeijiutian的博客
上图就是一个典型的滤波电路,这种电路也被应用在如今的显卡上。其中的SW IC相当于显卡上的开关电源,将输入的5V直流电转换为核心或者显存需要的3.3V直流电。而电路的L/C部分则构成电路的低通滤波器,目的就是尽量滤去直流电中的涟波电压。
而上图的表格则表明了,在L/C部分使用不同种类电容的情况下,这个电路中涟波电压的表现情况。可以看出,具有LOW ESR性能的铝固体聚合物导体电容(左边),其消除涟波电压的性能最强,钽二氧化锰电容(右边)性能次之,铝电解液电容(中间)表现最差。同时最后的数值还将受温度影响,这点我们还将在后面详细说明。
下一篇:电容的公式 电容公式