常见的几种二极管整流电路解析:
二极管半波整流电路实际上利用了二极管的单向导电特性。
当输入电压处于交流电压的正半周时,二极管导通,输出电压vo=vi-vd。当输入电压处于交流电压的负半周时,二极管截止,输出电压vo=0。半波整流电路输入和输出电压的波形如图所示。
对于使用直流电源的电动机等功率型的电气设备,半波整流输出的脉动电压就足够了。但对于电子电路,这种电压则不能直接作为半导体器件的电源,还必须经过平滑(滤波)处理。平滑处理电路实际上就是在半波整流的输出端接一个电容,在交流电压正半周时,交流电源在通过二极管向负载提供电源的同时对电容充电二极管整流电路,在交流电压负半周时,电容通过负载电阻放电。
通过上述分析可以得到半波整流电路的基本特点如下:
(1)半波整流输出的是一个直流脉动电压。
(2)半波整流电路的交流利用率为50%。
(3)电容输出半波整流电路中,二极管承担最大反向电压为2倍交流峰值电压(电容输出时电压叠加)。
(3)实际电路中,半波整流电路二极管和电容的选择必须满足负载对电流的要求。
全波整流
当输入电压处于交流电压的正半周时,二极管D1导通,输出电压Vo=vi-VD1。当输入电压处于交流电压的负半周时,二极管D2导通,输出电压Vo=vi-VD2。
由上述分析可知,二极管全波整流电路输出的仍然是一个方向不变的脉动电压,但脉动频率是半波整流的一倍。
晶体二极管组成的各种整流电路。
一、半波整流电路
下面从图5-2的波形图上看着二极管是怎样整流的。图5-1、是一种最简单的整流电路。它由电源变压器B 、整流二极管D 和负载电阻Rfz ,组成。变压器把市电电压(多为220伏)变换为所需要的交变电压e2,D 再把交流电变换为脉动直流电。
变压器砍级电压e2,是一个方向和大小都随时间变化的正弦波电压,它的波形如图5-2(a)所示。在0~K时间内,e2为正半周即变压器上端为正下端为负。此时二极管承受正向电压面导通,e2通过它加在负载电阻Rfz上,在π~2π 时间内,e2为负半周,变压器次级下端为正,上端为负。这时D承受反向电压,不导通,Rfz,上无电压。在π~2π时间内,重复0~π 时间的过程,而在3π~4π时间内,又重复π~2π时间的过程…这样反复下去,交流电的负半周就被“削”掉了,只有正半周通过Rfz,在Rfz上获得了一个单一右向(上正下负)的电压,如图5-2(b)所示,达到了整流的目的,但是,负载电压Usc。以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。
这种除去半周、图下半周的整流方法,叫半波整流。不难看出,半波整说是以“牺牲”一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流得出的半波电压在整个周期内的平均值,即负载上的直流电压Usc =0.45e2 )因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。
二极管整流电路电路赏析
全波整流电路
如果把整流电路的结构作一些调整,可以得到一种能充分利用电能的全波整流电路。图5-3 是全波整流电路的电原理图。
全波整流电路,可以看作是由两个半波整流电路组合成的。变压器次级线圈中间需要引出一个抽头,把次组线圈分成两个对称的绕组,从而引出大小相等但极性相反的两个电压e2a 、e2b ,构成e2a 、D1、Rfz与e2b 、D2、Rfz ,两个通电回路。
全波整流电路的工作原理,可用图5-4 所示的波形图说明。在0~π间内,e2a 对Dl为正向电压二极管整流电路,D1导通,在Rfz 上得到上正下负的电压;e2b 对D2为反向电压,D2 不导通(见图5-4(b)。在π-2π时间内,e2b 对D2为正向电压,D2导通,在Rfz 上得到的仍然是上正下负的电压;e2a 对D1为反向电压,D1 不导通(见图5-4(C)。
上一篇:二极管整流电路原理