360°详解去耦电容,真正的理解及在真正工程中的使用!

目录

一. 什么是去耦电容,为什么要去耦

1.简介

去耦(decoupling)电容也称退耦电容,一般都安置在元件附近的电源处,用来滤除高频噪声,使电压稳定干净,保证元件的正常工作。

2.分析

对于一个电路系统来说,一般有多个负载,这些负载的供电都来自于同一个电源

理想情况下,对于某个负载去耦电容,电源应该是这样子的

但是电路板上各个负载的工作都要动态地吸收电流,造成的供电电压的不稳,变成了下面这样子

也就是在5V的DC上叠加了各种高频率的噪声,这些噪声是由于器件对供电电流的需求导致的电压波动,可以看成是在DC 5V上“耦和”了由于器件工作带来的AC噪声。

这样耦和了AC的DC供电电压不仅会影响本负载区域内的电路的工作,也会影响到其它连接在同一个VCC上的其它负载的工作,有可能导致那些负载的电路工作出现问题。

解决的方法就是在电源两端并上一个小容量电容

从电源上看,没有去耦电容的时候如左侧的波形,加上了去耦电容之后变成了右侧的样子,供电电压的波形变得干净了,我们称该电容的作用是去掉了耦和在干净的DC上的噪声,所以该电容被称之为去耦电容,当然也可以被称之为旁路(Bypass)电容,因为该电容将DC上耦和的噪声给旁路到地上去了去耦电容,只留下干净的DC给后续的电路供电。

在整个系统每个负载都加一个去耦电容

至于电源输入端,也要加上电容去耦做输入滤波,弥补负载的滤波指数不够的情况

二. 去耦电容的选用

1.问题

了解了什么是去耦电容后,那么问题来了:

2.分析

在一个芯片(比如FPGA/MCU)的电源管脚上需要多个不同容值、不同类型的电容并联达到较好的去耦效果

我们用来去耦的电容器(不论是哪一种)用于在电源线上的瞬态干扰期间快速提供电流,它们都不只有“电容”一个属性,还有两个阻碍电流流动的部分:电阻(ESR) - 无论频率如何都呈现固定阻抗; 电感(ESL)- 随着频率的增加其阻抗也变得更高。而这三部分的值与电容的类型、容值、封装都有很大的关系。

作为最常用的去耦神器 - 陶瓷电容具有很低的ESR和ESL(它们也很便宜),其次是钽电容,提供适中的ESR和ESL,但相对有较高的电容/体积比,因此它们用于更高值的旁路电容,用于补偿电源线上的低频变化。对于陶瓷和钽电容,较大的封装通常意味着较高的ESL。

下图显示了0.1μF,封装为0603的陶瓷电容器的阻抗,该电容器具有850pH的ESL和50mΩ的ESR:

耦合电感去耦等效_去耦电容_旁路电容和去耦电容

正如前面讨论的,去耦电容的作用就是平滑掉高频变动的纹波电流,理想的电容器可以很容易地实现这一点,因为电容器的阻抗随着频率的增加而降低。 但由于ESL的存在,在某个频率下阻抗实际上随频率开始上升,这个频率点又被称为自谐振频率点。 我们再对比一下1μF的钽电容器,它有2200pH的ESL和1.5Ω的ESR。

由于其较高的电容值,钽电容器的阻抗在开始阶段低于陶瓷的阻抗,但是较高的ESR和ESL的影响导致阻抗在100kHz附近变平,在1MHz-10MHz高于陶瓷电容的阻抗,在10MHz附近高出陶瓷的阻抗10倍。设想一下,如果电路中的噪声频率是在10MHz左右,即使钽具有更高的电容,也不如放置一颗0.1μF的陶瓷电容更有效。 如果我们要旁路掉更高频率的噪声,即使这个陶瓷电容也会存在太大的阻抗,我们就需要更低的ESL,也就是更小的封装。

下图左侧表明两个同样是0603封装的电容并不改变其对高频噪声的去偶性能,只是相当于去耦电容的容量为二者的和而已,后面看到这个容量对旁路噪声的效果其实没有什么差别;而下图的右侧,一个0.1μF封装为0603的电容和100pF封装为0402的电容并联在一起,就可以覆盖更宽的高频范围,能够对两个频点的噪声进行去偶。


上一篇:电容球 球形电容器的电容及场强的讨论

下一篇:最专业的电容选型资料(转帖)

TAG标签: LED显示屏